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Figure 1: A bicomplex Newton’s fractal on a surface (a), its convergence speed (b) and a material built over these two maps (c).
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1 INTRODUCTION
The Newton-Raphson method is a
well-known iterative method used to
find roots of any function f : C→ C.
Nearby points usually converge to the
same solution. Hence one can identify
regions associated with each solution,
whose boundaries describe fractal pat-
terns [Peitgen et al. 1988]. This type of
pattern is known as Newton’s fractal and is typically used to gen-
erate interesting visualizations and effects like the one shown in
the inset figure. The usual approach is to define some polynomial
p(z) with roots {ξi }ni=1 and apply the Newton-Raphson method to
all points on the plane. Each point is associated with an index i
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corresponding to the solution ξi it converged to and then colored
with some coloration C(i). Despite the beautiful visualizations that
can arise, Newton’s fractals can only be used to generate images.

Bicomplex numbers are a generalization of complex numbers
that define a closed and commutative algebra in four dimensions [Dav-
enport 1991, 1996]. The bicomplex field BC is isomorphic to the
field of 2 × 2 matrices over C spanned by the following basis:

1 =
(
1 0
0 1

)
i =

(
i 0
0 i

)
j =

(
0 i
i 0

)
k =

(
0 1
1 0

)
(1)

Any bicomplex number can always be described as z = x1+yj, being
x ,y ∈ C. Differently from the complex field, bicomplex algebra is
isomorphic to a direct sum of two algebras over C [Davenport
1996]. In fact, one can construct two idempotent, zero divisors
and orthogonal elements e = (1 + k)/2 and e† = (1 − k)/2 such
that every bicomplex number z can be uniquely decomposed into
z = αe + βe†, making effectively {e,e†} a basis for BC over the
scalar field C.

Most of the properties of complex numbers still hold in bicomplex
algebra [Rönn 2001]. Bicomplex numbers are commutative and in-
vertible, and the elementary functions can be easily extended [Luna-
Elizarrarás et al. 2012]. The derivative of a bicomplex function
f : BC→ BC is well defined, and most of the differentiation rules
still apply.

Bicomplex numbers have already been used in abstract math-
ematics and computer graphics applications for describing frac-
tals [Wang and Song 2013]. However, previous work is limited to
considering classic escape-time fractals, like the Mandelbrot and
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Figure 2: An example of bicomplex Newton’s fractal used
as decoration (a). A volumetric rendering of a region that
identifies a solution of z3 − 1 = 0 (b).

Julia sets. In this work, we show that it is possible to use bicomplex
numbers to generalize even the well-known Newton’s fractal. More-
over, we also provide insights for possible application in procedural
texturing and volumetric rendering.

2 METHOD
Since bicomplex functions in the form f : BC → BC can be
expanded with Taylor [Rönn 2001], and the Taylor series in BC
converges, we can use the classical proof of the Newton-Raphson
method to show that Newton’s iteration converges to the root of a
function: this allows us to generalize Newton’s fractal to bicomplex
numbers, and use it to generate 4-dimensional patterns.

In the complex plane, the roots of the polynomial cn − 1 =
0 lie on the unit circle and are equispaced, and the interesting
patterns arising from this particular family of polynomials are
shown in most visualizations of Newton’s fractal. This still holds in
BC, where the roots of zn − 1 = 0 are equispaced on the unitary 4-
dimensional hyper-sphere [Pogorui and Rodríguez-Dagnino 2006].
This polynomial has n2 closed form solutions [Luna-Elizarrarás
et al. 2012; Pogorui and Rodríguez-Dagnino 2006] βi j = αie +α je†,
with αk = cos(2k−1n π ) + i sin(2k−1n π ).

Applying the Newton-Raphson method to solve bicomplex poly-
nomials in the form zn − 1 = 0 produces the same patterns of the
complex plane, but it extends to 4 dimensions. By using the 3D
coordinates of the visualized points, we can generate interesting
and complex patterns, as we show in Figure 1a and 2a, while using
the fourth coordinate either as a tunable parameter or as a time
dependency, allowing for an additional degree of freedom.

3 IMPLEMENTATION
We implement the algorithm as a pixel shader, where each thread
computes Newton’s iteration on the given point. This gives us the
possibility to fully exploit GPU computing.

We optimize our iteration scheme using ad-hoc algebraic manip-
ulations for the specific polynomial in use:

zk+1 = zk −
f (zk )
∂f (xk )
∂z

= zk −
znk − 1
n zn−1k

=
1
n

(
(n − 1)zk + z1−nk

)
(2)

This way we avoid bicomplex division, which usually requires 64
FLOPs. We also take advantage of the decomposition in the basis
{e,e†} to efficiently compute powers: in fact, since both e and e†

Figure 3: An example of bicomplex Newton’s fractal used as
mask for mixing different materials.

are idempotent, and sinceee† = 0, thenwe have zn = (αe+βe†)n =
αne + βne† (for any n ∈ Z), and complex powers can be computed
efficiently using polar coordinates.

We exploit the decomposition to represent bicomplex numbers
in the whole shader. Other than simplifying and speeding up the
computation, this representation also makes it easier to compute
which bicomplex solution a number converged to. If a number
converged to some z = αe + βe†, we can reduce the problem to
find to which complex solution α and β converged.

A smooth gradient representing the speed of convergence typi-
cally enriches Newton’s fractals using it, for example, as a heightmap
for additional detail in the texture. An option for computing it is

t = P −

P∑
k=0

1
1 + exp(δk + θ ) − exp(θ ) (3)

where δk = |zk+1 − zk | is the magnitude of each step, P is the num-
ber of iterations and θ is a tunable parameter. The same approach
can be generalized to a bicomplex setting, as we show in Figure 1b.

4 RESULTS AND CONCLUSIONS
Bicomplex numbers offer an instrument for generalizing Newton’s
fractal to 4 dimensions. This type of fractal offers a new possi-
bility for procedural generation of 4D textures. We have shown
that bicomplex Newton’s fractals generate interesting and complex
patterns, similar to their complex counterpart. Our results prove
that these patterns can fit all the most common applications, from
decorating surfaces (Figure 1c) and masking materials (Figure 3),
to volumetric rendering of fractal regions (Figure 2b).
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